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Abstract—Simulation of submicron semiconductor devices

cannot be performed accurately using the drift-diffusion model

(DDM), because of its inability to include nonlocal, hot carrier
transport phenomena. Devices of these sizes require solution of
the Poisson equation and the first three moments of the Boltz-
mann transport equation (BTE) [1]. These equations form a

system of time-dependent, nonlinear, coupled, partial differen-
tial equations. The differential equations can be numerically

solved using coupled or decoupled algorithms. Generally, cou-

pled solvers require larger memory space and me computation-
ally intensive, while conventional decoupled solvers have a limi-
tation on the maximum time step wldch can be taken for

transient solutions to less than the dielectric relaxation time

(7d). A new decoupled solver has been developed that allows
larger time steps than conventional decoupled Gummel algo-

rithms and is less CPU memory and time intensive than coupled
Newton solvers.

I. INTRODUCTION

G
aAs devices, such as MESFET’S, are used at mi-

crowave frequencies, rather than Si devices, due to their

higher gains and cutoff frequencies. In long channel GaAs

MESFET’S, the spatial variations of electric field and distri-

bution function are generally gradual so that steady state is

reached at every point’ in the device. This permits the two

transport parameters, mobility and diffusion coefficient, to be

considered to be local electric field dependent. In such cases,

a modified version of the drift-diffusion model (DDM) can be

used to simulate the devices.

In subrnicron devices, due to the rapid spatial variations of

electric field and distribution function, mobility and diffision

coefficient can no longer be considered as dependent on the

local electric field alone. The history of the carriers needs to

be taken into account to determine carrier heating effects. It

is, therefore, necessary to solve Boltzmann transport equa-

tion (BTE) and the Poisson equation, self-consistently, in

these situations, to simulate the devices accurately. Monte

Carlo or iterative methods can be used to solve the BTE and

the Poisson equation. This is, however, computationally very

expensive and has led to development of simpler models.
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Hydrodynamic transport equations are used to study nonsta-

tionary transport effectg in submicron devices, as a compro-

mise between speed and accuracy. These hydrodynamic

transport equations are the first three moments ?} the BTE:

the carrier continuity equation, the momentum balance equa-

tion and the energy balance equation. The momentum and

energy relaxation times, carrier mobility and difision coef-

ficient are energy-dependent parameters in these equations,

and are obtained from Monte Carlo simulations of carrier

transport in one-dimensional, uniform semiconductors at con-

stant electric fields under steady state conditions, Further

simplification of the momentum balance equation is possible,

based on the fact that in most cases there is an order of

magnitude difference in time scales between device and cir-

cuit time constants [2]. This results in a model called a

quasi-hydrodynamic transport model, consisting of the sim-

plified set of transport equations, also known & the balance

equations, and the Poisson equation.

II. TRANSPORT MODEL —
The quasi-hydrodynamic model consists of the following

set of equations.

Poisson equation:

V“eV~= –q(Nd– n). (1)

Particle conservation equation:

dn

x =–V” (nu). (2)

Simplified momentum conservation equation:

nu = n~eE + u.V(nkT.). (3) “

Energy conservation equation:

de V . ( nkT,u)

z
=qv” E– —

n
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potential.

carrier concentration.

doping concentration.

carrier velocity.

electric field.

carrier energy.

carrier mobility.

carrier temperature.

energy relaxation time.
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III. NUMERICAL METHOD

Equations (1) - (4), form a set of nonlinear, coupled, time-

dependent partial differential equations. These dt@erential
equations are discretized, using a finite-difference scheme

over the solution domain to obtain nonlinear, coupled, time-

dependent dzfierence equations. These difference equations

can be linearized and solved in a coupled manner (Newton

method). The advantage of this method is that, theoretically,

there is no constraint on the maximum allowable time step

(At). But it should be noted that a very large “At” makes

the initial guess of the solution to be very critical, and if very

different from the true solution, can affect the overall conver-

gence rate, This scheme, in general, requires larger memory

space and is computationally intensive.

An alternative to this method is to solve the difference

equations sequentially, in a decoupled fashion using a con-

ventional Gummel algorithm. But, decoupling of the Poisson

and carrier continuity equations introduces a restriction on

the maximum allowable time step At, which needs to be kept

smaller than the dielectric relaxation time of the material.

The dielectric relaxation time is a function of doping and is

approximately 10 fs for typical active layer concentrations,

A(d = 1017 cm-3. Further, if the carrier continuity and en-

ergy balance equations are decoupled and solved sequen-

tially, “A t‘’ must be kept less than the min( Xz /DW) where

x = grid spacing and D_ = maximum carrier difision

coefficient [3]. Such limitations on the maximum time step

At obviously require prohibitive computational resources for

transient simulations, and especially for steady state prob-

lems.

Here, a new decoupled Gummel algorithm that allows At

equal to as much as 10-20 x Td, is presented. In this scheme,

the Poisson equation modified as shown next, and resulting

equation is solved using a full implicit method

v “ Evl/)’+1= –q(N~ – nr+l) (5)

at time level (t + 1).

Rewriting nt + 1 using Taylor series expansion, ignoring all
an()O(A t 2, terms and substituting for — from the continu-
ijf t

!,

ity equation yields [4]

v “ evry+l = –q(N~ – nt + At

o(v o (- rzj@#t+’ -I- V(D=nt)))), (6)

where De = carrier diffusion coefficient.

The potential, @f+ 1, is obtained by solving (6) using a full

implicit method.

The continuity equation is approximated to first order

accuracy in “At,” O(At), as

(nt+l - nt)

At
=.f(nt+l, et), (7)

where f is a function of n and e.

Therefore, the transport parameters, carrier mobility and

the diffusion coefficient are lagged by one time step in the

carrier continuity equation.
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Fig. 1. GaAs MESFET structure used for simulation.
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Fig. 2. Simulation results using conventional Gurnmel algorithm for the
MESFET structure shown in Fig. 1, under bias conditions Vd = 2.0 V,

Vg = – 0.5 V at steady state. (a) Equi-concentration contour plot (normal-

ized to Nd) in 0.1 Nd steps; (b) Equi-potential contour plot in 0.1 V steps;

(c) Equi-energy contour plot in 0.1 ev’ steps.

Having obtained the potential and carrier concentration for

the current time level to O(A t), the energy balance equation

is solved for energy for time level (t + 1). Since this equa-

tion is nonlinear, it must be first linearized and solved using

the full implicit method. Since the Poisson and balance

equations are solved to O(A t ), independently of each other,

the nonlinear iteration loop is eliminated in the new decou-

pled Gummel scheme.

IV. RESULTS

The GaAs MESFET structure simulated is shown in

Fig. 1. The structure consists of a 0.15 pm-thick active layer

with doping concentration, Nd = 1017 cm – 3 on 0.25 pm-

thick semiinsulating substrate ( Nd = 1014 cm-3,. The

source/drain ohmic contacts are 0.5 pm-wide and 1.5 pm

apart with a Schottky gate in between. For transient and

steady state simulations of the terminal currents in this

scheme, the time steps are gradually increased exponentially

from “Td/2” to “lOTd.” The new Gummel scheme is found

to be stable for time steps as large as 20 7d, in striking

contrast to current conventional Gttmmel algorithms which

do not converge for time steps, “A t‘’ > rd. Figs. 2 and 3
show equi-carrier concentration, equi-potential and equi-en-

ergy contours at steady state obtained using a conventional

decoupled and the new decoupled schemes respectively. The

equi-carrier concentration contours are shown with the car-

rier concentration normalized to Nd. Table I shows the CPU

times required to obtain steady state current values for the

two different Gummel schemes, at different bias conditions,

on a Cray Y-MP. There is a 5 – 7 X CPU time savings in

the new Gummel scheme. Fig. 4 shows ID- VD characteris-

tics of this GaAs MESFET structure, as evaluated by both

schemes. It should be noted that the drain current does not

saturate even at high V~ > 3.0 V. This is mainly due to
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Fig. ~. Simulation results using new Gurnmel algorithm for the MESFET
structure shown in Fig. 1, under bias conditions V,i = 2.0 V. V. = – 0.5 V
at steady state. (a) Eq~Lconcentration contour plot ~normalized t: Nd) in 0.1
Nd steps; (b) Equi-potential contour plot in 0.1 V steps; (c) Equi-energy

contour plot in 0.1 eV steps.

TABLE I
CPU TIME TAKEN BY THE CONVENTIONAL GUMMEL ALGORSTHM (OLD)

AND THE NEW ALGORITHM ON A CaAY Y-MP TO OBTAIN STEADY

STATE SOLUTIONS

Old Old New New
Bias Algorithm Algorithm Algorithm Algorithm

Conditions (CPU . s) ID (rnzl) (CPU . s) ID (W&4)

VD=2V, VG= –0.5V 860 88.7 142 88.0
VD=4V, VG= –0.5V 910 99.6 151 101.1

carrier injection into the semi-insulating substrate. Carrier

injection phenomena increases with the drain voltage, as can

be seen by comparing the equi-carrier concentration contours

shown in Fig. 3 and Fig. 5 for drain biases of 2.0 V and 4.0

V, respectively.

V. CONCLUSION

The order in which the quasi-hydrodynamic equations are

solved exploits the l~ge difference between the energy relax-

ation time, I-e (typically 0.5 ps) and the dielectric relaxation

time, 7d (10 fs). Keeping the time step “A t‘’ smaller than

the energy relaxation time 7, gives better results because the

relative change in energy in-successive time steps is smaller

than the relative change in carrier concentration. Hence the

error introduced by using previous time level energies to

obtain the transport parameters, pp and De, is smaller than if

lagged values of carrier concentration ‘were used in the

energy balance equation.

A new decoupled scheme which is numerically stable for

time steps At as large as 20 x 7d is presented. This makes it

possible to reduce Cray Y-MP CPU times by 5-7 X com-
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Fig. 4. Drain current (Id) versus drain voltage ( VJ characteristics for the

MESFET shown in Fig. 1.
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Fig. 5. Simulation results using new Gmnmel atgorithm for the MESFET

structure shown in Fig. 1, under bias conditions Vd = 4.0 V, Vg = – 0.5 V
at steady state. (a) Equi-concentration contour plot (normtilzed to Nd) in 0.1

Nd steps; (b) Equi-potential contour plot in 0.1 V steps; (c) Equi-energy
contour plot in 0.1 eV steps.

pared to those required by conventional Gummel algorithms,

for steady state computations. This algorithm allows efficient

analysis of GaAs MESFET’s for microwave applications to

study phenomena such as carrier heating near the drain,

Gunn domain formation and carrier injection into the serni-

insulating substrate.
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