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Abstract—Simulation of submicron semiconductor devices
cannot be performed accurately using the drift-diffusion model
(DDM), because of its inability to include nonlocal, hot carrier
transport phenomena. Devices of these sizes require solution of
the Poisson equation and the first three moments of the Boltz-
mann transport equation (BTE) [1]. These equations form a
system of time-dependent, nonlinear, coupled, partial differen-
tial equations. The differential equations can be numerically
solved using coupled or decoupled algorithms. Generally, cou-
pled solvers require larger memory space and are computation-
ally intensive, while conventional decoupled solvers have a limi-
tation on the maximum time step which can be taken for
transient solutions to less than the dielectric relaxation time
(74). A new decoupled solver has been developed that allows
larger time steps than conventional decoupled Gummel algo-
rithms and is less CPU memory and time intensive than coupled
Newton solvers.

I. INTRODUCTION

aAs devices, such as MESFET’s, are used at mi-

crowave frequencies, rather than Si devices, due to their
higher gains and cutoff frequencies. In long channel GaAs
MESFET’s, the spatial variations of electric field and distri-
bution function are generally gradual so that steady state is
reached at every point in the device. This permits the two
transport parameters, mobility and diffusion coefficient, to be
considered to be local electric field dependent. In such cases,

a modified version of the drift-diffusion model (DDM) can be

used to simulate the devices.
In submicron devices, due to the rapid spatial variations of
electric field and distribution function, mobility and diffusion

coefficient can no longer be considered as dependent on the

local electric field alone. The history of the carriers needs to
be taken into account to determine carrier heating effects. It
is, therefore, necessary to solve Boltzmann transport equa-
tion (BTE) and the Poisson equation, self-consistently, in
these situations, to simulate the devices accurately. Monte
Carlo or iterative methods can be used to solve the BTE and
the Poisson equation. This is, however, computationally very
expensive and has led to development of simpler models.
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Hydrodynamic transport equations are used to study nonsta-
tionary transport effects in submicron devices, as a compro-
mise between speed and accuracy. These hydrodynamic
transport equations are the first three moments gjf the BTE:
the carrier continuity equation, the momentum balance equa-
tion and the energy balance equation. The momentum and
energy relaxation times, carrier mobility and diffusion coef-
ficients are energy-dependent parameters in these equations,
and are obtained from Monte Carlo simulations of carrier
transport in one-dimensional, uniform semiconductors at con-
stant electric fields under steady state conditions. Further
simplification of the momentum balance equation is possible,
based on the fact that in most cases there is an order of
magnitude difference in time scales between device and cir-
cuit time constants [2]. This results in a model called a

" quasi-hydrodynamic transport model, consisting of the sim-

plified set of transport equations, also known as the balance
equations, and the Poisson equation.

II. TRANSPORT MODEL

The quasi-hydrodynamic model consists of the following
set of equations.

Poisson equation:
V-eVp = —q(N, — n). (1) -
Particle conservation equation: -
on
37 (2)

Simplified momentum conservation equation:

nv=nuE + pyV(nkT,).

= =V - (nv).

(3)

Energy conservation equation: E

6_e_=qv.E_V_Ln_kT;v)_v Ve_ul (4)
at n 7.(e)
. where -
¢  potential,
n  carrier concentration.
N, doping concentration.
v carrier velocity.
E  electric field.
e  carrier energy.
p, carrier mobility.

T, carrier temperature.
. energy relaxation time.
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III. NUMERICAL METHOD

Equations (1)-(4), form a set of nonlinear, coupled, time-
dependent - partial differential equations. These differential
equations are discretized, using a finite-difference scheme
over the solution domain to obtain nonlinear, coupled, time-
dependent difference equations. These difference equations
can be linearized and solved in a coupled manner (Newton
method). The advantage of this method is that, theoretically,
there is no constraint on the maximum allowable time step
(At). But it should be noted that a very large ““A#”’ makes
the initial guess of the solution to be very critical, and if very
different from the true solution, can affect the overall conver-
gence rate. This scheme, in general, requires larger memory
space and is computationally intensive.

An alternative to this method is to solve the difference
equations sequentially, in a decoupled fashion using a con-
ventional Gummel] algorithm. But, decoupling of the Poisson
and carrier continuity equations introduces a restriction on
the maximum allowable time step A¢, which needs to be kept
smaller than the dielectric relaxation time of the material.
The dielectric relaxation time is a function of doping and is
approximately 10 fs for typical active layer concentrations,
N, = 10" cm™3. Further, if the carrier continuity and en-
ergy balance equations are decoupled and solved sequen-
tially, ““‘A#>’ must be kept less than the min(x*/D,,,,) where
x = grid spacing and D,, = maximum carrier diffusion
coefficient [3]. Such limitations on the maximum time step
At obviously require prohibitive computational resources for
transient simulations, and especially for steady state prob-
lems.

Here, a new decoupled Gummel algorithm that allows Af

equal to as much as 10-20 X 7, is presented. In this scheme, -

the Poisson equation modified as shown next, and resulting
equation is solved using a full implicit method

V . ev¢l+1 — _q(Nd . nt+l)

()
at time level (¢ + 1).
Rewriting n’*! using Taylor series expansion, ignoring all

on
O(At?) terms and substituting for (E )t from the continu-
ity equation yields [4]

VeVt = —g(N, - n' + At
(V- (=n'uye'™' + V(D,n")))), (6)
where D, = carrier diffusion coefficient.

The potential, ¢'*!, is obtained by solving (6) using a full
implicit method.

The continuity equation is approximated to first order
accuracy in “‘At,”’ O(At), as

(nt+1 _ nt)

- =f(nt+1,et),

(7)
where f is a function of n and e.

Therefore, the transport parameters, carrier mobility and
the diffusion coefficient are lagged by one time stép in the
carrier continuity equation.
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Fig. 1. GaAs MESFET structure used for simulation.

Fig. 2. Simulation results using conventional Gummel algorithm for the
MESFET structure shown in Fig. 1, under bias conditions V;=2.0V,
V, = —0.5 V at steady state. (2) Equi-concentration contour plot (normal-
1zed to N, in 0.1 Ny steps; (b) Equi-potential contour plot in 0.1 V steps;
(¢) Equi-energy contour plot in 0.1 eV steps.

Having obtained the potential and carrier concentration for .
the current time level to O(Af), the energy balance equation
is solved for energy for time level (¢ + 1). Since this equa-
tion is nonlinear, it must be first linearized and solved using
the full implicit method. Since the Poisson and balance
equations are solved to O(Aft), independently of each other,
the nonlinear iteration loop is eliminated in the new decou-
pled Gummel scheme.

1v. RESULTS

The GaAs MESFET structure simulated is shown in
Fig. 1. The structure consists of a 0.15 pm-thick active layer
with doping concentration, N; = 1017 cm™3 on 0.25 pm-
thick semiinsulating substrate (N, = 10" cm™3). The
source/drain ohmic contacts are 0.5 pm-wide and 1.5 pm
apart with a Schottky gate in between. For transient and
steady state simulations of the terminal currents in this
scheme, the time steps are gradually increased exponentially
from ‘‘7, /2’ to *“107,.”” The new Gummel scheme is found
to be stable for time steps as large as 20 7,, in striking
contrast to current conventional Gummel algorithms which
do not converge for time steps, ‘“‘A¢’’ > 7,. Figs. 2 and 3
show equi-carrier concentration, equi-potential and equi-en-
ergy contours at steady state obtained using a conventional
decoupled and the new decoupled schemes respectively. The
equi-carrier concentration contours are shown with the car-
rier concentration normalized to N,. Table I shows the CPU
times required to obtain steady state current values for the
two different Gummel schemes, at different bias conditions;
on a Cray Y-MP. There is a 5 — 7 X CPU time savings in
the new Gummel scheme. Fig. 4 shows I,- V), characteris-
tics of this GaAs MESFET structure, as evaluated by both
schemes. It should be noted that the drain current does not
saturate even at high ¥V, > 3.0 V. This is mainly due to
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Fig. 3. Simulation results using new Gummel algorithm for the MESFET
structure shown in Fig. 1, under bias conditions ¥, = 2.0V, Ve=-035V
at steady state. (a) Equi-concentration contour plot (normalized to Ny in 0.1
N, steps; (b) Equi-potential contour plot in 0.1 V steps; (¢) Equi-energy
contour plot in 0.1 eV steps.

TABLE 1
CPU TiME TAKEN BY THE CONVENTIONAL GUMMEL ALGORITHM {(OLD)
AND THE NEW ALGORITHM ON A CRAY Y-MP 10 OBTAIN STEADY
STATE SOLUTIONS

. Old Old New New
Bias Algorithm  Algorithm Algorithm Algorithm
Conditions (CPU:s) I,(mA) (CPU:s) Ip(mA)
Vp=2 v, Vo= —-05V 860 88.7 142 88.0
Vp=4V,Vg=-05V 910 99.6 151 101.1

carrier injection into the semi-insulating substrate. Carrier
injection phenomena increases with the drain voltage, as can
be seen by comparing the equi-carrier concentration contours
shown in Fig. 3 and Fig. 5 for drain biases of 2.0 V and 4.0
V, respectively.

V. CONCLUSION

The order in which the quas1-hydrodynam1c equations are
solved exploits the large difference between the energy relax-
ation time, 7, (typically 0.5 ps) and the dielectric relaxation
time, 7, (10 fs). Keeping the time step ‘‘A¢’” smaller than
the energy relaxation time 7, gives better results because the
relative change in energy in successive time steps is smaller
than the relative change in carrier concentration. Hence the
error introduced by using previous time level energies to
obtain the transport parameters, p, and D,, is smaller than if
lagged values of carrier concentration were used in the
energy balance equation.

A new decoupled scheme Wthh is numerncally stable for
time steps A as large as 20 X 7, is presented. This makes it

possible to reduce Cray Y-MP CPU times by 5-7 X com-

177

2
00 o New algorithm

o Old algorithm

Vg=0V

100

‘ Id (mA)

0 L Il 1
0.0 1.0 2.0 3.0 4.0

Vd(v)

Fig. 4. Drain current (I,) versus drain voltage (V) characteristics for the
MESFET shown in Fig. 1.

Fig. 5. Simulation results using new Gummel algorithm for the MESFET
structure shown in Fig. 1, under bias conditions ¥, = 4.0V, ¥V, = 0.5V
at steady state. (a) Equi-concentration contour plot (normalized to Ny in0.1

N, steps; (b) Equi-potential contour plot in 0.1 V steps; (¢) Equi-energy
contour plot in 0.1 eV steps.

pared to those required by conventional Gummel algorithms,
for steady state computations. This algorithm allows efficient
analysis of GaAs MESFET’s for microwave applications to
study phenomena such as carrier heating near the drain,
Gunn domain formation and carrier injection into the semi-

. insulating substrate.
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